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Chapter 13

Vector Valued Functions and

Motions in Space

In this chapter we study two types of special functions:

(1) Continuous mapping of one variable(called a curve)

(2) Mapping from a subset of Rn to itself(called vector fields)

13.1 Curves and Tangents

When a particles moves in the space during a times interval I, we think of

its coordinates as a vector function r(t) = (f(t), g(t), h(t)) defined on I. The

points (x, y, z) = (f(t), g(t), h(t)) make up a curve called a path.

Definition 13.1.1. A curve(or path) can be represented as a function r :

I = [a, b] → R
n, n = 2, 3. It is called a parameterized curve. r(a) and r(b)

are called the endpoints of the path.

A parameterized curve r in R
2 or R3 can be written as

r(t) = ~OP = f(t)i+ g(t)j+ h(t)k = (x1(t), x2(t), x3(t)). (13.1)

f(t), g(t), h(t) are called component functions. It may be viewed as the

position of a particle moving along the curve.

A function having vector value, like equation (13.1) is called a vector

valued function.

1



2CHAPTER 13. VECTORVALUED FUNCTIONS ANDMOTIONS IN SPACE

We define the limit of a vector function as

lim
t→t0

r(t) = L = ( lim
t→t0

f(t), lim
t→t0

g(t), lim
t→t0

h(t)).

Definition 13.1.2. If all the component xi(t) of r is continuous(resp. differen-

tiable), then we say r is continuous(resp. differentiable) and its derivative

is written as

r′(t) = lim
∆t→0

r(t+∆t)− r(t)

∆t
= (f ′(t), g′(t), h′(t)). (13.2)

The geometric meaning of derivative of r(t)

When r(t) 6= 0, it represents a tangent vector at t.

Definition 13.1.3. A curve r(t) is said to be smooth if dr/dt is continuous

and never zero. In this case, the image curve looks smooth. One of the reason

for requiring nonzero derivative is that we want to avoid the case when a

particle moving along the curve traces back. (i.e., move backward)

On a smooth curve, there is no sharp corner or cusps.

r(t)

P

O

x

y

z

O

x

y

z

Figure 13.1: piecewise smooth curve can have no tangent at cusps

A path may have many parametrizations.

Example 13.1.4. (1) r(t) = a+ tb is a line

(2) r(t) = (cos t, sin t) on [0, 2π] is path traveling a circle once. If the domain

is [0, 4π], it travels twice.
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Figure 13.2: Graph of Möbius strip and torus

x

y

z

Enneper’s Surface (u− u
3

3
+ uv2, v − v

3

3
+ vu2, u2 − v2)

x
y

z
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Figure 13.3: Family of curves
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(3) A family of curves are obtained from surface: If we fix say v = 1 from

Enneper’s surface, we get (2u− u3

3 ,
2
3 + u2, u2 − 1). (Fig 13.3)

(4) r(t) = (a cos t, a sin t, bt) defines a circular helix. (Fig 13.3)

Derivatives and Motion

r(t)
r(t+∆r)

r(t+∆r)− r(t)

O

x

y

z
r
′(t)

r(t)
r(t+∆t)

r(t+∆t)−r(t)
∆t

O

x

y

z

Figure 13.4: As ∆t → 0, r′(t) becomes tangent vector

Definition 13.1.5. Let r be a smooth curve. Then

(1) the velocity is defined : v(t) = r′(t)

(2) the speed of r is ‖v(t)‖.

(3) the acceleration vector is a(t) = v′(t) = r′′(t).

(4) the unit vector v(t)/‖v(t)‖ is the direction.

Proposition 13.1.6. Let r be a differentiable path and assume v0 = v(t0) 6=
0. The tangent line to the path is given by

ℓ(t) = r0 + (t− t0)v0. (13.3)

Example 13.1.7. Find the velocity, acceleration of a particle moving along

the curve r(t) = 2 cos ti+ 2 sin tj+ 4cos2 tk.

sol.

v(t) = r′(t) = −2 sin ti+2cos tj− 8 cos t sin tk = −2 sin ti+2cos tj− 4 sin 2tk.
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x
y

z

Figure 13.5: Curve of Example 13.1.7

The acceleration is

a(t) = r′′(t) = −2 cos ti− 2 sin tj− 8 cos 2tk

The speed is

‖v(t)‖ =
√

(−2 sin t)2 + (2 cos t)2 + (−4 sin 2t)2 =
√

4 + 16 sin2 t.

The position when t = 7π/4 is

r(
7π

4
) = 2 cos

7π

4
i+ 2 sin

7π

4
j+ 4cos2

7π

4
k =

√
2i−

√
2j+ 2k.

The velocity vector at t = 7π/4 is

v(
7π

4
) =

√
2i+

√
2j+ 4k.

Example 13.1.8. A particle moves with a constant acceleration a(t) = −k.

When t = 0 is the position is (0, 0, 1) and velocity is i+ j. Describe the motion

of the particle.

sol. Let c(t) = (x(t), y(t), z(t)) represent the path traveled by the particle.

Since the acceleration is c′′(t) = −k we see the velocity is

c′(t) = C1i+ C2j− tk+ C3k.
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1

−1

1−1

r(t) = ( t
2

2
, t

3

3
)

Figure 13.6: At a cusp, dr(t)
dt |t=0 = 0

Hence by initial condition, c′(t) = i + j − tk and so c(t) = ti + tj − t2

2 k +

Const vec. The constant vector is k. Hence c(t) = ti+ tj+ (1− t2

2 )k.

Example 13.1.9. The image of C1-curve is not necessarily ”smooth”. it may

have sharp edges; (Fig 13.6)

(1) Cycloid: c(t) = (t − sin t, 1 − cos t) has cusps when it touches x-axis.

That is, when cos t = 1 or when t = 2πn, n = 1, 2, 3, · · · .

(2) Hypocycloid: (Fig 13.7) c(t) = (cos3 t, sin3 t) has cusps at four points

when cos t = 0,±1.

(3) Consider r(t) = ( t
2

2 ,
t3

3 ). Eliminating t, we get

(2x)3 = (3y)2.

At all these points, we can check that c′(t) = 0.(Roughly speaking, tangent

vector has no direction or does not exist.)

Differentiation Rules

(1) d
dt [b(t)± c(t)] = b′(t)± c′(t) (Sum/difference)

(2) d
dt [p(t)c(t)] = p′(t)c(t) + p(t)c′(t) for any differentiable scalar function

p(t) (scalar multiple)

(3) d
dt [b(t) · c(t)] = b′(t) · c(t) + b(t) · c′(t) (dot prodcut)

(4) d
dt [b(t)× c(t)] = b′(t)× c(t) + b(t)× c′(t) (cross product)
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b
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c(t)

t

4t
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y

Figure 13.7: Hypocycloid x2/3 + y2/3 = 1

(5) d
dt [c(q(t))] = q′(t)c′(q(t)) (chain rule)

Example 13.1.10. Figure 13.7. A circle C of radius 1/4 is rolling along the

unit circle U : x2 + y2 = 1. Represent the locus of the point P starting from

(1, 0) to return to itself.

sol. (Refer to Figure 13.7). The center of C is 3
4 (cos t, sin t), The desired

point c(t) is given by

c(t) =
3

4
(cos t, sin t) +

1

4
(cos(t− 4t), sin(t− 4t))

=
1

4
(3 cos t+ cos 3t, 3 sin t− sin 3t)

Since c(2π) = (1, 0), we see the path is

c(t) =
1

4
(3 cos t+ cos 3t, 3 sin t− sin 3t), 0 ≤ t ≤ 2π

by trig. identity 1 it beceoms

c(t) = (cos3 t, sin3 t), 0 ≤ t ≤ 2π

or

x2/3 + y2/3 = 1

1 sin 3θ = 3 sin θ − 4 sin3 θ, cos 3θ = 4 cos3 θ − 3 cos θ
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13.2 Integrals of Vector functions; Projectile Mo-

tion

If the component of r(t) = f(t)i + g(t)j + h(t)k is integrable over [a, b] then

we can define its integral as follows

∫ b

a
r(t)dt =

(
∫ b

a
f(t)dt

)

i+

(
∫ b

a
g(t)dt

)

j+

(
∫ b

a
h(t)dt

)

k

13.2.1 Projectile Motion

Example 13.2.1 (Throwing a ball). Assume a baseball a player throws a

ball(or a cannon ball) with an initial velocity v0m/sec that is in the direction

of (cosα, sinα). Describe the trajectory.

α
O

Figure 13.8: A projectile

sol. The motion follows from Newton’s second law of motion:

The force acting on the ball is equal to the mass times the acceleration: F = ma.

Since the acceleration is a(t) = r′′(t), we must have

ma = mr′′(t) = −mgj or r′′(t) = −gj,

where g = 9.8m2/sec is the gravity constant.
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Integrating, we get the velocity

v(t) := r′(t) = −gtj+ c

for some constant vector c. Integrating once more, we obtain

r(t) = −1

2
gt2j+ ct+ d.

Since the initial velocity is v(0) = c = 20(cosα, sinα), v0 = 20 we have

r(t) = −1

2
gt2j+ (v0 cosα)ti+ (v0 sinα)tj+ d,

where d is the initial position of the ball.

Example 13.2.2 (baseball hit). A baseball is hit when it is 1 m above the

ground. The initial speed if 50m/s at an angle of 20 degrees (with horizontal).

At the moment of hit, the wind was blowing in the opposite direction of the

ball 2.5mi/s.

(1) Find the location

(2) How high does the ball go and when it reaches its maximum height?

(3) How far it would go until it hits the ground and when ?

sol. The situation is the same as above example except the effect of wind.

So

r(t) = −1

2
gt2j+ (v0 cosα− 2.5)ti+ (v0 sinα)tj+ j

= (50 cos 20o − 2.5)ti + (1 + 50 sin 20ot− 4.9t2)j.

it reaches maximum when dy/dt = 50 sin 20o − 9.8t = 0, t = 1.75.

Example 13.2.3. Show that if c(t) is a vector function such that ‖c(t)‖ is

constant, then c′(t) is perpendicular to c(t) for all t.

Solution:
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‖c(t)‖2 = c(t) · c(t). Derivative of constant is zero. Hence

0 =
d

dt
[c(t) · c(t)] = c′(t) · c(t) + c(t) · c′(t) = 2c(t) · c′(t).

Thus c′(t) is perpendicular to c(t).

13.3 Arc Length

Definition 13.3.1 (Arc Length). Suppose a curve C has one-to-one differen-

tiable parametrization r. Then the arc length is defined by

L(r) =

∫ b

a
‖v(t)‖ dt =

∫ b

a
‖r′(t)‖ dt =

∫ b

a

√

x′(t)2 + y′(t)2 + z′(t)2dt.

To find the length of a path, we divide the path into small pieces and

approximate each piece by a line segment joining the end points; then summing

the length of individual line segments we obtain an approximate length. The

length is obtained by taking the limit. To define it precisely, we use the

Riemann integral.

a = t0 t1 ti−1 ti tk = b

r

r(t0)

r(t1)

b

b

r(ti−1) r(ti)

r(tk)

‖r(ti)−r(ti−1)‖

O

z

y

x

Figure 13.9: Riemann sum of the curve length
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The sum of the line segment is

k
∑

i=1

∆si =
k

∑

i=1

‖r(ti)− r(ti−1)‖

=
k

∑

i=1

√

(∆xi)
2 + (∆yi)

2 + (∆zi)
2

=
k

∑

i=1

√

(

∆xi
∆ti

)2

+

(

∆yi
∆ti

)2

+

(

∆zi
∆ti

)2

∆ti.

As k → ∞ it converges to

∫ b

a

√

x′(t)2 + y′(t)2 + z′(t)2 dt. (13.4)

Example 13.3.2. Find the length of the curve x2/3 + y2/3 = 1.

sol. It suffices to consider the first quadrant and we parameterize it as

r(t) = (cos3 t, sin3 t), 0 ≤ t ≤ π/2.

‖r′(t)‖ =

√

(−3 cos2 t sin t)2 + (3 sin2 t cos t)2 = 3| sin t cos t|

Length is

4

∫ π/2

0
3| sin t cos t| dt = 6

∫ π/2

0
sin 2t dt

= 6

[

−1

2
cos 2t

]π/2

0

= 6

[

−1

2
(−1)−

(

−1

2

)]

= 6

Example 13.3.3. Find the arclength of the helix r(t) = (a cos t, a sin t, bt),

0 ≤ t ≤ 2π.

Sol.

‖r′(t)‖ = ‖ − a sin ti+ a cos tj+ bk‖ =
√

a2 + b2.
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Hence

L(r) =

∫ 2π

0

√

a2 + b2dt = 2π
√

a2 + b2.

Example 13.3.4. Find the arclength of the curve (cos t, sin t, t2), 0 ≤ t ≤ 2π.

Sol.

‖v‖ =
√

1 + 4t2 = 2

√

t2 +
1

4
.

To evaluate this integral we need a table of integrals:

∫

√

x2 + a2 dx =
1

2
[x
√

x2 + a2 + a2 log(x+
√

x2 + a2)] + C.

Example 13.3.5. Find the length of the cycloid

r(t) = (t− sin t, 1− cos t).

Since

‖r′(t)‖ =
√

(1− cos t)2 + (sin t)2 =
√
2− 2 cos t

we see

L(r) =

∫ 2π

0

√
2− 2 cos tdt = 2

∫ 2π

0

√

1− cos t

2
dt

= 2

∫ 2π

0
sin

t

2
dt

= 4

(

− cos
t

2

)
∣

∣

∣

∣

2π

0

= 8.

Example 13.3.6. Suppose a function y = f(x) given. Then the graph is

viewed as a curve parameterized by t = x and r(x) = (x, f(x)). So the length

of the graph from a to b is

L(r) =

∫ b

a

√

1 + (f ′(x))2dx.

Velocity and speed

Assume the path r(t) = (x(t), y(t), z(t)) represents the movement of an object.

In other word, the location of the object at time t is given by r(t). Then the

instantaneous velocity at t = t0 is given as follows, and it is the tangent
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vector at t = t0.

r′(t0) = lim
h→0

r(t0 + h)− r(t0)

h
= (x′(t0), y

′(t0), z
′(t0)).

Example 13.3.7. If an object follow moving along the curve c(t) = ti+ t2j+

etk at time t takes off the curve at t = 2 and travels for 5 seconds. Find the

location.

sol. We assume the object travels along the tangent line after taking off

the curve. The velocity at t = 2 is c′(2) = i+ 4j + e2k. Hence the location 5

second after taking off the curve

c(2) + 5c′(2) = 2i+ 4j+ e2k+ 5(i+ 4j+ e2k)

= 7i+ 24j+ 6e2k.

Hence the location is (7, 24, 6e2).

Arc-Length Parameter

Recall : Given a C1-parametrization of a curve C. Then we have seen that

the arc length of C is given by

L(r) =

∫ b

a
‖r′(t)‖ dt =

∫ b

a

√

x′(t)2 + y′(t)2 + z′(t)2dt.

Definition 13.3.8. Now we fix a base point P = P (t0) and treat upper limit

of the integral as a variable t. Then the arclength becomes a function of t,

arc-length function :

s(t) =

∫ t

t0

‖r′(τ)‖ dτ.

The arc-length (parameter)function satisfies

ds

dt
= s′(t) = ‖r′(t)‖ = speed.

Assuming r′(t) 6= 0, we see ds
dt is always positive. Hence we can solve for s in

terms of t(inverse function theorem). Hence we can use s as a new parameter

to represent the curve C.
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Example 13.3.9. For the helix r(t) = (a cos t, a sin t, bt), we can find a new

parametrization by s as follows:

s(t) =

∫ t

0
‖r′(τ)‖ dτ =

∫ t

0

√

a2 + b2dτ =
√

a2 + b2 t,

so that

s =
√

a2 + b2 t, or t =
s√

a2 + b2
.

Hence

r(t(s)) =

(

a cos

(

s√
a2 + b2

)

, a sin

(

s√
a2 + b2

)

,
bs√

a2 + b2

)

.

Definition 13.3.10. The unit tangent vector T of the path r is the nor-

malized velocity vector

T =
v(t)

‖v(t)‖ =
r′(t)

‖r′(t)‖ .

Example 13.3.11. For the helix r = (a cos t, a sin t, bt), we have

T =
r′(t)

‖r′(t)‖ =
−a sin ti+ a cos tj+ bk√

a2 + b2
.

Example 13.3.12. For the curve r = (t, t2, t3), we have

r′(t) = i+ 2tj+ 3t2k.

T =
r′(t)

‖r′(t)‖ =
i+ 2tj+ 3t2k√
1 + 4t2 + 9t4

.

But arclength is not easy to compute:

s(t) =

∫ t

0

√

1 + 4t2 + 9t4 dt.

Example 13.3.13 (Change of the position r vector w.r.t arclength). In gen-

eral, finding a parametrization by arclength parameter s is not a simple task.

However, it has important meaning: Assume r(s) be a parametrization by

arclength parameter. Then by the chain rule and property of arclength pa-
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rameter, we have

r′(t) = r′(s)
ds

dt

= r′(s)‖r′(t)‖.

Since ‖r′(t)‖ 6= 0, we have

r′(s) =
r′(t)

‖r′(t)‖

(

i.e.,
dr

ds
=

v

|v| = T

)

.

Thus r(s) has always unit speed (i.e., r′(s) always has a unit length). The two

parametrization (a cos t, a sin t) and (a cos 2πt, a sin 2πt) have different speeds

along the same circle. For the first one, r′(t) = (−a sin t, a cos t). So

s(t) =

∫ t

0

√
a2dτ = at.

So

(a cos t, a sin t) = (a cos
s

a
, a sin

s

a
).

While for the second one, r′(t) = (−2aπ sin t, 2aπ cos t). So

s(t) =

∫ t

0
2aπdτ = 2aπt.

Solving t = s/2aπ. So

(a cos 2πt, a sin 2πt) = (a cos
s

a
, a sin

s

a
).

So the parametrization by the arc length parameter is the same. In fact, it is

independent of any parametrization(Why?)

13.4 Curvature and Normal vectors of a Curve

To measure how the curve bends we need to define the following:

Definition 13.4.1. The curvature of a path r is the rate of change of unit

tangent vector T per unit of length along the path. In other words,

κ(t) =

∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

=
‖dT/dt‖
ds/dt

=
1

‖v‖

∥

∥

∥

∥

dT

dt

∥

∥

∥

∥

.
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If
∥

∥

dT
ds

∥

∥ is large at some point P , the curve turns sharply, and the curvature

is large there.

Example 13.4.2. Consider a line r(t) = a + tv for some constant vector a.

r′(t) = v, and T = v/‖v‖ is a constant vector. So

κ = 0.

Circular Orbits

Consider a particle of mass m moving at constant speed s in a circular path

of radius r0. We can represent its motion (in the plane) as

r(t) = (r0 cos t, r0 sin t) .

Since speed is ‖r′(t)‖ = v = r0. So the motion is described as

v = r′(t) = (−r0 sin t, r0 cos t) , ‖v‖ = r0.

T =
v

‖v‖ = (− sin t, cos t)

dT

dt
= (− cos t,− sin t)

‖dT
dt

‖ = 1.

Hence

κ =
1

‖v‖

∥

∥

∥

∥

dT

dt

∥

∥

∥

∥

=
1

r0
=

1

radius
.

Since T(t) is a vector whose length is constant, we have 1 = ‖T(t)‖2 =

T(t) ·T(t). Taking the derivative of constant is zero. Hence

0 =
d

dt
[T(t) ·T(t)] = T′(t) ·T(t) +T(t) ·T′(t) = 2T(t) ·T′(t).

Thus T′(t) is perpendicular to T(t) for all t.

The vector dT/ds turns in the direction along which the curve turns.

Definition 13.4.3. At a point where κ 6= 0, the principal unit normal
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b

b

b

∆T

N

T
N

T(t)

r(t)

T(t+∆t)

N = lim ∆T

∆t

∆T

O x

y

Figure 13.10: T turns in the direction of N

vector for a smooth curve in the plane is

N =
1

κ

dT

ds
=

dT/dt

‖dT/dt‖ .

The second equality is verified as follows.

N =
dT/ds

‖dT/ds‖ (use Chain rule)

=
(dT/dt)(dt/ds)

‖dT/dt‖(dt/ds)

=
dT/dt

‖dT/dt‖ .

The vector dT
ds point in the direction in which T turns as the curve bends.

b

b P

N T
center of curv

circle of curv

Figure 13.11: Circle of Curvature
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Circle of Curvature for Plane curves

The circle of curvature or osculating circle at a point P is defined when

κ 6= 0. It is a circle that

(1) has the same tangent line as the curve has

(2) has the same curvature as the curve has

(3) has center in the concave side

The radius of curvature of the curve at P is the radius of the circle of

curvature. (i.e, 1/κ)

Example 13.4.4. Find the osculating circle of parabola y = x2 at the origin.

sol. We parameterize the parabola by

r(t) = ti+ t2j.

Find the osculating circle of parabola y = x2 at the origin.

v =
dr

dt
= i+ 2tj

|v| =
√

1 + 4t2

T =
v

|v| = (1 + 4t2)−1/2i+ 2t(1 + 4t2)−1/2j.

Hence

dT

dt
= −4t(1 + 4t2)−3/2i+ [2(1 + 4t2)−1/2 − 8t2(1 + 4t2)−3/2]j.

When t = 0,

κ =
1

|v(0)|

∣

∣

∣

∣

dT

dt
(0)

∣

∣

∣

∣

=
√

02 + 22 = 2

Now the normal N = j. Hence the center is at (0, 1/2) and the circle is

(x− 0)2 + (y − 1

2
)2 = (

1

2
)2.
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Curvature and normal vectors for Space curves

The curvature and the principal unit normal vector for a smooth curve

of a space curve given by r defined to be the same as plane curve.

κ =

∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

=
1

‖v‖

∥

∥

∥

∥

dT

dt

∥

∥

∥

∥

(13.5)

N =
1

κ

dT

ds
=

dT/dt

‖dT/dt‖ . (13.6)

Example 13.4.5. Find the curvature for the helix

r(t) = (a cos t)i+ (a sin t)j+ btk, a, b > 0.

sol.

v = −(a sin t)i+ (a cos t)j+ bk

|v| =
√

a2 sin2 t+ a2 cos2 t+ b2 =
√

a2 + b2

T =
v

|v| =
1√

a2 + b2
[−(a sin t)i+ (a cos t)j+ bk].

Hence

κ =
1

|v|

∣

∣

∣

∣

dT

dt

∣

∣

∣

∣

=
1√

a2 + b2

∣

∣

∣

∣

1√
a2 + b2

[−(a cos t)i− (a sin t)j]

∣

∣

∣

∣

=
a

a2 + b2
|[− cos ti− sin tj]|

=
a

a2 + b2
.

Example 13.4.6. Find the normal N for the helix above.
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x
y

z

Helix : (cos t, sin t, t).

r

Figure 13.12: Helix

dT

dt
= − 1√

a2 + b2
[(a cos t)i+ (a sin t)j]

|dT
dt

| =
1√

a2 + b2

√

a2 cos2 t+ b2 sin2 t =
a√

a2 + b2

N =
dT/dt

|dT/dt| = −
√
a2 + b2

a

1√
a2 + b2

[(a cos t)i+ (a sin t)j]

= −(cos t)i− (sin t)j.

Hence N is always lying in the xy - plane and pointing toward z axis.

13.5 Tangent and Normal components of a

Given a curve, we have seen the unit tangent vector T and the unit normal

vector N. Using these we can define a third vector B (called binormal,

normal to the plane of T and N) by

B = T×N.

The three vectors T, N and B form an orthogonal coordinate system

(called TNB frame or Frenet (1816-1900) frame) and is useful in studying

an object moving on the curve.
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We see

v =
dr

dt
=

dr

ds

ds

dt
= T

ds

dt

a =
dv

dt
=

d

dt

(

T
ds

dt

)

=
d2s

dt2
T+

ds

dt

dT

dt

=
d2s

dt2
T+

ds

dt

(

dT

ds

ds

dt

)

=
d2s

dt2
T+

ds

dt

(

κN
ds

dt

)

=
d2s

dt2
T+ κ

(

ds

dt

)2

N.

Definition 13.5.1. If acceleration vector is written as

a = aTT+ aNN (13.7)

then

aT =
d2s

dt2
=

d

dt
|v| and aN = κ

(

ds

dt

)2

= κ|v|2 (13.8)

are tangential and normal components of acceleration.

aN =
√

‖a‖2 − a2T (13.9)

Example 13.5.2. Without finding T and N, write the acceleration of the

motion

r(t) = (cos t+ t sin t)i+ (sin t− t cos t)j, t > 0

in the form a = aTT+ aNN.

sol.

v =
r

dt
= (− sin t+ sin t+ t cos t)i+ (cos t− cos t+ t sin t)j

= (t cos t)i+ (t sin t)j

|v| =
√

t2 cos2 t+ t2 sin2 t = t

aT =
d

dt
‖v‖ =

d

dt
(t) = 1.
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Figure 13.13: Binormal

a = (cos t− t sin t)i+ (sin t+ t cos t)j

|a|2 = t2 + 1

aN =
√

‖a‖2 − a2T

=
√

t2 + 1− 1 = t.

Thus

a = aTT+ aNN = T+ tN.

Torsion

How does dB/ds behaves in relation to T,N,B?

dB

ds
=

d(T ×N)

ds
=

dT

ds
×N+T× dN

ds
= 0 +T× dN

ds
.

Thus dB/ds is orthogonal to T. Since dB/ds is orthogonal to B(∵ B · B =

1, 0 = d(B · B)/(ds) = 2B · dB/ds), it is a scalar multiple of N. Hence we

have
dB

ds
= −τN

for some scalar τ . This τ is called torsion and one can easily see that it

satisfies
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τ = −dB

ds
·N.

(1) κ = |dT/ds| is the rate at which the normal plane turns about the point

P as the point moves along the curve.

(2) τ = −(dB)/ds)N is the rate at which the osculating plane turns about

T as the point moves along the curve.

Formula for computing the curvature and torsion

v × a =

(

ds

dt
T

)

×
[

d2s

dt2
T+ κ

(

ds

dt

)2

N

]

=

(

ds

dt

d2s

dt2

)

(T×T) + κ

(

ds

dt

)3

(T×N)

= κ

(

ds

dt

)3

B.

Hence

|v × a| = κ

∣

∣

∣

∣

ds

dt

∣

∣

∣

∣

3

|B| = κ|v|3.

κ =
|v × a|
|v|3 (13.10)
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Figure 13.14: TNB


